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Abstract: In the last decades since the dramatic increase in flood frequency and magnitude, floods have
become a crucial problem in West Africa. National and international authorities concentrate efforts on
developing early warning systems (EWS) to deliver flood alerts and prevent loss of lives and damages.
Usually, regional EWS are based on hydrological modeling, while local EWS adopt field observations.
This study aims to integrate outputs from two regional hydrological models—Niger HYPE (NH) and
World-Wide HYPE (WWH)—in a local EWS developed for the Sirba River. Sirba is the major tributary
of Middle Niger River Basin and is supported by a local EWS since June 2019. Model evaluation indices
were computed with 5-day forecasts demonstrating a better performance of NH (Nash–Sutcliffe
efficiency NSE = 0.58) than WWH (NSE = 0.10) and the need of output optimization. The optimization
conducted with a linear regression post-processing technique improves performance significantly to
“very good” for NH (Heidke skill score HSS = 0.53) and “good” for WWH (HSS = 0.28). HYPE outputs
allow to extend local EWS warning lead-time up to 10 days. Since the transfer informatic environment
is not yet a mature operational system 10–20% of forecasts were unfortunately not produced in 2019,
impacting operational availability.

Keywords: Middle Niger River Basin; Sirba River; floods; flood alert; HYPE; model evaluation;
hydrological model; optimization; early warning system; SLAPIS

1. Introduction

Recent changes in hydrological processes resulted in a dramatic increase of flood events in
West Africa [1,2]. Several authors documented such changes and particularly the Sahelian paradox
observed in South-West Niger [3,4]. Hydrological studies over the last 20 years in the region show
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a runoff decrease in the Sudano–Guinean catchments and an increase in the Sahelian ones [5–7].
The causes of hydrological changes in the Sahelian area are highly debated among scientists and
probably rather than from a single factor they can derive from the interaction of several drivers [8].
Among them, the most acknowledged are the recent recovery of rainfall in the Sahel, even if below the
pre-1970 levels, the increased occurrence of extreme rainfall events, and the strong soil and vegetation
degradation [9–12]. The reduced water-holding capacity of the soil leads to greater and faster runoff

increasing both erosion and river flows [3].
In the last decade, the increase, both in terms of frequency and intensity [13], of extreme flood

events together with the demographic growth have produced significant and unprecedented damage
to populations [14]. These catastrophic events prompted governments to seek support from the
international community to develop early warning systems (EWS) aiming to increase preparedness of
local communities.

Some experiences of EWSs developed with a community-based approach have been documented
in developing countries, where communities are active participants in the design, monitoring and
management of the EWS [15] [16–19]. EWSs, as defined by the United Nations International Strategy
for Disasters Reduction, are based on four pillars: (1) risk knowledge, (2) risk monitoring and warning,
(3) risk information dissemination and communication, and (4) response capacity. Among these pillars,
risk monitoring and warning has been addressed in recent years at global [20–22] continental [23,24] or
river basin [25] levels developing hydrological models that allow lead times much longer than those
obtainable with local observations [15]. Despite these improvements, in situ measured hydrological
data are often considered more reliable then hydrological model outputs for operational applications,
particularly if coupled with hydraulic propagation models [26]. Nevertheless, EWSs based only on
in-situ measures are limited in forecasting time (propagation time limited to a few days), timeliness
(lack of availability of real time observations) and coverage (low density of gauging stations) being
able to save lives but not assets or livelihoods [27].

The integration of hydrological modeling with in-situ measures and hydraulic modeling has recently
been successfully tested in Niger on the Sirba River [28]. In such a context of poorly gauged basins,
where hydrological models cannot be adequately calibrated, hydrological forecasts are nevertheless
useful to timely activate the pre-warning tasks while operational warnings were delivered in the case
of threshold overpassing in the upstream field observations linked to flood scenarios developed with
ad-hoc hydraulic models [29]. Nevertheless, the longer lead times ensured by the hydrological forecasts
application underline the importance of downscaling and optimizing models’ outputs to improve the
performances and ensure a higher reliability of the local early warning systems [30].

The objective of this study is to downscale, optimize and evaluate hydrological forecasts from the
FANFAR system [31], specifically provided by the models Niger HYPE 2.23 (NH) and World-Wide
HYPE 1.3.6 (WWH), for the application in local EWS of the Sirba River.

This work is structured as follows: Section 2 focuses on the study area, hydrology, EWS and
hydrological model features. Section 3 defines the methodology adopted. Sections 4 and 5 describe the
results and discuss the importance of the research. Section 6 contains the conclusions and introduces
some possible future perspectives of this study.

2. Materials

2.1. Study Area

Sirba River is the main tributary of the Middle Niger River Basin covering an area of 39,000 km2

shared between Burkina Faso and Niger. The morphology of the basin is characterized by very slight
height variation (from 444 m a.s.l. to 181 m a.s.l.) laying on a granitic substrate. Climate is Sahelian
with a unimodal distribution of rainfall from June to September averaging from 400 mm/year in the
northern part to 700 mm/year in the southern one [32]. Rainfall distribution along the rainy season
is inhomogeneous with persistent dry spells and extreme rainfall events [33] strongly affecting the
hydrology of the Sirba River [13].
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Within the Sirba basin, the study area covers the Nigerien reach of 108 km from the Burkina-Niger
border to the confluence with the Niger River (Figure 1).
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Figure 1. Geographical framework of the study area: the Sirba River Basin with the hydrometers, the
main hydrographic network, the administrative boundaries, and the sub-basins of NH (Niger HYPE)
and WWH (World-Wide HYPE) models. Bottom right: West Africa overview with NH and WWH
covered surface.

In the last 20 years, the riverine communities (97 settlements with 61,703 people, belonging to
7732 households) have been repeatedly affected by Sirba floods [26,34,35]. The flood events caused
tremendous damage to livelihoods (mainly related to family subsistence agriculture), infrastructures
and private buildings (mainly clay houses).

The Sirba River is gauged with some hydrometers in Burkina Faso including three major stations
(Bassieri, Liptougou and Sebba) on the three tributaries (Koulouko, Faga and Yali rivers) and two
stations in Niger in the main watercourse (Garbey Kourou and Bossey Bangou). Garbey Kourou
(GK) is located 8 km upstream the confluence Sirba-Niger and was installed in 1956 for the Sirba
flow characterization while Bossey Bangou (BB) was installed in 2018 few kilometers downstream
Niger-Burkina border by ANADIA2.0 Project to ensure EWS tasks. Both Nigerien stations are managed
by General Directorate for Water Resources and are equipped with staff gauges and pressure devices
(SEBA PS Ligth-2®) sending data with hourly time step with GSM paradigms.

2.2. Sirba Hydrology and Observed Flow Series

Sirba is a classical Sahelian river, dry for 7–8 months and rapidly activated by the first rains in
June. Flood peaks generated by rainfall events occur generally between August and September.

The hydrological behavior of the Sirba River has been recently analyzed using the discharge time
series of the Garbey Kourou gauging station from the installation in 1956 until 2019. The analysis
of the annual maximum discharge results in a clear non-stationary distribution with clear positive
trend [13,25]. According to the changes in rainfall time series [33], two changepoints have been detected
on annual maximum trend: 1968 (the end of the wet period) and 1989 (the end of the dry period.
A third breakpoint was detected in 2008, starting a new period of extreme floods [13]. This change is in
line with the increase of extreme daily rainfall occurrence [3,9].
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The mean hydrographs (Figure 2) clearly show the deep changes of the Sirba hydrology in the
four hydrologic periods. The first period (1956–1968) usually considered the reference period shows a
flow season with maximum flow in the month of September of about 180 m3/s and a mean flow of
26 m3/s. The second period (1969–1989) clearly shows the effects of minor rainfalls in a lowering in the
mean annual flow (23 m3/s) and in the earliest flow season that reach the flow peaks (130 m3/s) in the
month of August. The third period (1990–2008) reveals the effects of “Sahelian Paradox” [4] in the
Sirba Basin with peaks (220 m3/s) and mean flow (47 m3/s) higher than the first period. The fourth
period (2009–2019) highlights a completely different hydrologic behavior of the Sirba River with a
mean flow that doubled (100 m3/s) and an unprecedent annual maximum flow (550 m3/s).
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Figure 2. Comparison of Sirba River average hydrographs, over the four hydrological periods, at Garbey
Kourou hydrometer.

2.3. SLAPIS: the Sirba EWS

SLAPIS is an integrated flood EWS aiming to promote decision-making and behavioral shift from
reactive to proactive action at several levels, from the community to the administration. It addresses
all four EWS components [36], while also being community and impact-based [28]. Risk knowledge
is addressed through participatory risk assessment and identification of flood hazard scenarios and
potential impacts [29] connecting the available technical capabilities with the local level through a
participatory approach. The monitoring and warning component integrates existing hydrological
models, real time measurements and qualitative observations into hydrological warnings based
on four color-coded classes [26] bridging the gap between top-down and bottom-up approaches.
Moreover, the integration of hydrological forecasts and observations with the community monitoring
and preparedness system provides a lead time suitable for operational decision-making at national and
local levels. The dissemination component was accomplished with the national alert code, involving
stakeholders from national to local level and building on multiple communication channels [28].
Response capability builds on the existing local volunteer system, local participatory adaptation,
and contingency planning [29]. This allows the beneficiaries to define the rules of the whole system,
strengthening their ability to understand the information and react.

Particularly concerning the monitoring and warning components, two hydrological models have
been considered for the EWS development: GloFAS and HYPE. GloFAS is a probabilistic global
hydrological model developed by the European Commission Joint Research Center. GloFAS version
2.1 has been optimized on the Sirba River applying correction factors to model outputs because of the
poor reliability of the original forecasts on local application. The optimization ensured a substantial
improvement in forecast accuracy (particularly the shape of the forecasted hydrograph rather than its
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intensity) [30] allowing optimized GloFAS 2.1 to be used in the EWS platform for the Sirba River as
pre-warning, while warnings will only be sent using the in-situ measurements.

SLAPIS is empowered by an information system that has been designed to collect observed data
as well as forecast data, supplying optimization models and disseminating results to be used in local
EWS. SLAPIS is operational from June 2019 at www.slapis-niger.org [37].

2.4. The FANFAR System, HYPE Models and Forecasted Streamflow

FANFAR is a regional flood forecasting and alert system at West African scale [31]. It is motivated
by the increase in flood challenges not only in the Sirba River, but throughout West Africa in recent
years. FANFAR stems from ten years of cooperation between West African and European scientists
and practitioners. The system is built and continuously refined through a participatory co-design,
co-development, and co-operation process involving more than 30 national and regional organizations
from 17 countries (Benin, Burkina Faso, Cape Verde, Chad, Gambia, Ghana, Guinea, Guinea Bissau,
Ivory Coast, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone, and Togo) [38].

FANFAR is a pilot operational system providing openly accessible hydrological forecasts with
a 10-day outlook on catchment resolution at https://fanfar.eu/ [39]. The system employs a daily
forecasting chain centered on the two hydrological models Niger HYPE (NH) [40] and World-Wide
HYPE (WWH) [22], as well as tailored versions of these models [41]. Both models are based on the
HYPE open-source code (https://hypeweb.smhi.se/model-water/) but differ substantially in their setup
and characteristics. The NH model was set up and calibrated to simulate daily hydrological dynamics
of the Niger River basin and incorporates tailored components for specific hydrological features
important in the region (the Inner Niger Delta and soil flow paths adapted to represent Sahelian
conditions). The WWH, on the other hand, was developed aiming to represent global water dynamics
on monthly resolution, without specific tailoring to any region. The NH and WWH models are driven
by the HydroGFD meteorological data set, which is a combination of global operational forecast
models, reanalysis models and gridded observations [42,43]. The simulated streamflow representing
Garbey Kourou and Bossey Bangou in each model have been used. Bossey Bangou was however
not available in NH, and therefore its streamflow was approximated with the inflows of upstream
sub-basins. More details on the models and data used are provided in Table 1.

Table 1. Main features of Niger HYPE and World-Wide HYPE models.

Model Niger HYPE World-Wide HYPE

Version 2.23 1.3.6

Geographic Domain Niger River Basin West Africa

Area (million km2) 2.1 8.9

Sub-Basins (#) 803 4581

Average Sub-Basin Size (km2) 2665 1870

Sub-basins in Sirba Watershed (#) 17 (3 in Niger) 29 (6 in Niger)

ID of the Sub-Basins Used 5004 (Garbey Kourou)
3529 + 3472 + 4786 (upstream Bossey Bangou)

208596 (Garbey Kourou)
219145 (Bossey Bangou)

Forcing Data HydroGFD v. 1 HydroGFD v. 2

Forecast Frequency daily daily

Time of Forecast Production afternoon (16 h–17 h) morning (11:30 h–12 h)

Analysis Period 1 June 2016–3 March 2020 8 June 2017–3 March 2020

2.5. Hazard Thresholds

The Sirba River was characterized by hazard thresholds from the SLAPIS EWS and the two
hydrological models (NH and WWH) acting on the basin. Thresholds have in common the three scale

www.slapis-niger.org
https://fanfar.eu/
https://hypeweb.smhi.se/model-water/
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(frequent, severe, and catastrophic floods) and the color of the scenarios (yellow, orange, and red) but
differs in return period and flow rate.

For the hydrological models (Niger HYPE and World-Wide HYPE) the flood hazard and severity
levels are determined through a threshold exceedance approach. The thresholds are currently based on
exceeding the 2, 5, and 30 years return period magnitudes determined individually for each sub-basin
using extreme value analysis on a long historical simulation with each model version [25]. The SLAPIS
hazard thresholds were defined according to both the observed flows and field effects on the main
riverine communities [26]. From the hydrologic point of view these thresholds were related to: (1) the
mean flow hydrology (flow duration curves), (2) the return period analysis based on annual maximum
and (3) the non-stationary return period analysis according the hydrologic changes [44]. The specific
thresholds used in SLAPIS and FANFAR at Garbey Kourou are presented in Table 2.

Table 2. Hazard thresholds for the Sirba River at Garbey Kourou hydrometer in SLAPIS and for Niger
HYPE and World-Wide HYPE. “RP” is the return period magnitudes in years.

Scenario
SLAPIS Niger-HYPE World-Wide HYPE

RP (year) Q (m3/s) RP (year) Q (m3/s) RP (year) Q (m3/s)
Yellow 5 600 2 480 2 96
Orange 10 800 5 700 5 163

Red 30 1500 30 1080 30 274

3. Methods

The methodology applied in this study consists of three steps: (1) an evaluation of the original
forecast performances, (2) an optimization of model outputs to improve forecast reliability and (3)
an evaluation of optimized forecasts to quantify the improvements reached in the post processing
procedures [30].

Other methodologies adopted in this research are related to hydraulics and informatic domain.
Hydraulic modeling has been fundamental for the translation of flood wave computation to
define the forecast in Bossey Bangou from the upstream sub-basins according to the results of
Massazza et al. 2019 [26]. Since NH does not have a sub-basin in BB this forecast was built with the
sum of the outputs in the three upstream tributaries that covers 97% of the upstream basin. According
to the channel length and the flood wave velocity of 0.93 m/s [26] forecasts were shifted by one day
(flood wave translation time in the three tributaries equal to 19.4, 23.6 and 23.8 h). Informatic procedures
have been used to daily download the HYPE forecasts and the visualization in the SLAPIS platform
after post-processing according to the optimization results. SLAPIS architecture has been developed
based on several open-source technologies and software components that have been implemented
following service oriented architecture paradigms [45] and international standards for geographical
information management.

3.1. Model Evaluation

The model evaluation is based on continuous and categorical indices and operational availability
of the forecast.

Continuous indices are used to evaluate the fitting between observed and forecasted flows
(Table 3). The discharge was analyzed like a continuous variable with three different indices: (1) the
root mean square error (RMSE) to identify the mean gap, in absolute value, between forecasts and
observations, (2) the RMSE observations standard deviation ratio (RSR) consist in the normalization of
RMSE with the standard deviation of observations and 3) the Nash–Sutcliffe efficiency (NSE) index is
a normalized statistic that identifies the ratio between the residual variance and the measured data
variance [46–48].
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Table 3. Formula, best and worst values and unit of measure (UM) for continuous indices. Where T
is the number of observed/forecasted days, F is forecasted flow, O is observed flow and N the total
number of the data.

Index Formula Best Value Worst Value UM

RMSE RMSE =

√∑ T
t=1(Ot−Ft)

2

N
0 +∞ (m3/s)

RSR RSR = RMSE
STdevOBS

=


√∑ T

t=1(Ot−Ft)
2√∑ T

t=1(Ot−0)
2

 0 +∞ (usually within 1) (-)

NSE NSE = 1−
[∑ T

t=1(Ft−Ot)
2∑ T

t=1(Ot−0)
2

]
1 − ∞ (usually within 0) (-)

Categorical indices are used to evaluate the reliability of the forecast in terms of predicting flood
events. The discharge was compared to a specific threshold and became a dichotomous variable
of type “yes” or “no” referring to the specific “threshold exceeding” event. Contingency table of
Figure 3 identifies the number of “a = hits”, “b = false alarms”, “c = misses”, and “d = correct
negatives” [20,46,49].
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Usually, the thresholds are defined according to the hazard thresholds used for EWS (Table 2).
However, since the yellow threshold for SLAPIS (600 m3/s) was never exceeded in the 2019 hydrological
year, the decision to consider the flow of 450 m3/s for categorical indices computation was taken in
order to analyze a sufficient number of events. This discharge has been overpassed 18 days at Bossey
Bangou and 16 days at Garbey Kourou hydrometers in the hydrological year 2019 compared with the
15 days defined for the yellow threshold in the mean hydrologic year [26].

The indices used (Table 4) are bias (BIAS), probability of detection (POD), false alarm rate (FAR),
percent correct (PC), threat score (TS), and Heidke skill score (HSS).

Operational availability is an index used to quantify how many forecasts were produced and
made available until 23:59 UTC for each issue date. Since the SLAPIS EWS is required to publish the
new forecast every day and the hydrological forecasts come from another system, it is very important
that forecasts are constantly delivered in the same format and timing to be correctly used. This index is
simply a measure of the forecast integrity that could be limited by problems at the production level,
informatic supply chain or user level [46]. The score is computed with the ratio of available forecasts
on the whole number of forecasts expressed as a percentage.
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Table 4. Formula, best and worst values and unit of measure (UM) for categorical indices.

Index Formula Best Value Worst Value UM

BIAS BIAS = a+b
a+c 1 Major distance from 1 (-)

POD POD = a
a+c 1 0 (-)

FAR FAR = b
a+b 0 1 (-)

PC PC = a+d
a+b+c+d 1 0 (-)

TS TS = a
a+b+c 0 1 (-)

HSS HSS =
2(ad−bc)

(a+c)(c+d)+(a+b)(b+d) 0 1 (-)

3.2. Model Optimization

Optimization procedures reveal a fundamental importance to adapt the results at the boundary
conditions in many different domains [50,51]. In the hydrologic field usually, an optimization was
conducted varying the sensitive model parameters in feasible domain to reduce the gap between
forecasted and observed flows [52–54]. In this case of study, because of the need for local optimization
of hydrological outputs, authors chose to adapt the outputs as a post-processing procedure in order to
improve outputs at local level without affecting the forecast reliability outside the study area. Therefore,
the optimization was developed from the user and not from the developer point of view. Moreover,
the optimization process was hydrologically oriented on homogeneous periods of the wet season that
were separately analyzed [28].

The hydrological year was divided in twelve periods according to river hydrology [13]. The dry
season (November to May) was considered into a unique interval. The low-flow months (June and
October) were considered with a monthly time frame, whereas the months with medium-high flows
(July, August, and September) were optimized with a ten days’ time frame. The probability occurrence
evaluation was conducted on the last hydrological period (2009–2019). The flood days were identified
in the days when the mean discharges exceeded the yellow threshold (600 m3/s). This analysis shows
that all the flood events occurred between 21 July and 30 September and the 92.4% of threshold
exceeding are between 1 August and 20 September (Table 5).

Table 5. Probability occurrence evaluation of the 12 homogeneous periods of the wet season in the last
hydrological period (2009–2019).

Month June July August September Oct. Nov. May

Days - 1–10 11–20 21–31 1–10 11–20 21–31 1–10 11–20 21–30 - -

Period 1 2 3 4 5 6 7 8 9 10 11 12

QMIN (m3/s) 0 8 7 7 120 59 157 146 148 51 1 0

QMEAN (m3/s) 64 125 214 288 480 450 566 540 468 262 31 1

QMAX (m3/s) 449 416 579 701 1216 1044 1403 1202 965 696 594 66

Flood (#days) 0 0 0 4 26 36 37 40 31 10 0 0

Flood [%] 0.0 0.0 0.0 2.2 14.1 19.6 20.1 21.7 16.8 5.4 0.0 0.0

The optimization process was conducted as a volumetric scaling with a linear regression technique
based on six different equations (1st, 2nd, 3rd, 4th, 5th polynomial functions and logarithmic).
The coefficients of the linear regression models were estimated on each period with the ordinary
least squares (OLS) method based on 5-day forecasts [55]. The objective function is the maximization
of R2 between the observed flow and the forecast optimized with the linear regression model [28].
The coefficients respect the statistical tests of Newey–West heteroskedasticity and autocorrelation and
are significantly different from zero at the 0.05 level [48,56]. R2 reach values between 0.29 and 0.84
(mean = 0.48) for WWH and between 0.26 and 0.68 (mean = 0.37) for NH model. The R2 values are
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affected by the scattered forecasted values originated from the regional models and the rejection of the
statistical tests.

The optimization was conducted on the reference 5-day forecast. This forecast horizon was chosen
because it is the middle of the forecast time and was a time sufficiently longer to activate the pre-waring
tasks on the field [29]. In the optimization, the dataset was divided in two parts, the first part for the
training and the second part for the validation. To increase the training period, all years except the last
have been used for training (2016–2018 for NH and 2017–2018 for WWH) and the forecast validation,
made with the same indices of Section 3.1, was conducted on the hydrological year 2019.

In the following section the acronyms NH, WWH, NHOTT and WWHOTT will be used to indicate
the original and optimized versions of the forecast.

4. Results

4.1. Forecast Performances

The results consider the observed flow and the four forecasted series (NH, WWH, NHOTT and
WWHOTT) at a 5-day forecast horizon.

The results of Table 6 and Figures 4–7 show the performance for the GK station. The results for BB
are not shown since: (1) the short flow time series of BB does not allow a sufficient background and (2)
these results are quite closer for BB and GK. The results of Table 7 instead show the mean performances
in the two gauging stations to evaluate the overall performances of hydrological forecasts on the Sirba
EWS that present some differences in the two stations. Tables and figures with the overall results are
presented for completeness in Appendix A.

Table 6. Basic statistical parameters (minimum, mean, and maximum) at Garbey Kourou in the
validation year 2019. Observed flow, NH and WWH (5-day) forecasts before and after the optimization.

Index Observed NH WWH Optimized NH Optimized WWH

Minimum (m3/s) 0.0 0.4 0.0 0.4 0.0
Mean (m3/s) 72.8 76.5 5.6 108.4 116.2

Maximum (m3/s) 526.1 557.7 84.6 589.5 564.3
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Table 7. Continuous and categorical indices and operational availability for original and optimized
forecasts (mean values of Garbey Kourou and Bossey Bangou). Best performance is shown in bold.

Model RMSE RSR NSE BIAS POD FAR PC TS HSS Operational
Availability

NH 107.7 0.64 0.58 0.66 0.23 0.71 0.934 0.15 0.22 81%
WWH 161.5 1.05 0.10 0.00 0.00 / 0.944 0.00 0.00 92%

NHOTT 76.2 0.46 0.79 1.22 0.62 0.50 0.945 0.40 0.53 81%
WWHOTT 87.0 0.56 0.68 2.36 0.56 0.76 0.875 0.20 0.28 92%

The preliminary analysis based on the basic statistical parameters demonstrates that while NH
correctly identifies the magnitude of minimum, mean and maximum flows WWH values are quite
underestimated (Table 6). After the optimization process the indices demonstrate that both NHOTT

and WWHOTT are overestimated. The behavior is quite different for the two models, while NHOTT

overestimates maximum more than the mean, WWHOTT does the contrary.
Flow duration curves (Figure 4) confirms the preliminary results emphasizing some interesting

points: (1) all the forecasts simulate quite well the dry period of the river even if WWH zeros start
from day 100 and NH is not able to produce zero values, (2) WWH forecasts do not demonstrate a
clear relation with the observed river flow, (3) NH, even if has the same mean than the observed flow,
overestimates in the very high (Q1–Q10) and low flows (Q80–Q150) and underestimates in the medium
flows (Q10–Q80), (4) NHOTT is quite closer to the observed flow until day 75 and overestimates the low
flows and (5) WWHOTT strongly overestimates all the observed flows.

The hydrographs with the NH forecast demonstrate that the magnitude of forecasted flow is quite
close to the observed ones (Figure 5). The forecasts do not present strong outliers and well identify the
flow peaks in the hydrologic year. Generally, forecasts demonstrate a good skill before optimization and
improved skill after optimization. In NH, the influence of calibration at the Garbey Kourou station [25]
is very clear. The forecast performance at Bossey Bangou has lower quality (Appendix A Figure A2).

The hydrographs with WWH forecasts clearly show that original forecasts are able to represent the
annual flow cycle, especially for the dry season, but not the flow magnitude (Figure 6). The WWHOTT

demonstrates a strongly improved correlation with the observed hydrograph and both timing and
magnitude of flood peaks are correctly identified. The gap between WWH and observed flows is
related to the setup and goal of WWH (calibrated with a global focus and a monthly resolution for
water balance analysis), without the more tailored calibration applied in NH.

The hydrograph of the 2019 validation wet season well highlights strengths and weaknesses of
the four compared forecasts (Figure 7): (1) WWH forecasts for July and the first part of August are
mainly zeros and the optimized ones are quite overestimated, (2) NH wet season sufficiently well
reproduce the GK flows but is shifted about two weeks forward, (3) the optimized forecasted flows
correctly identify the annual maximums between the middle of August and the middle of September
even if the WWHOTT in the last period of August is quite underestimated and, (4) even if the NHOTT

performs well, it’s affected by high levels of missing data (i.e., low operational capacity). This is a
major limitation of the present FANFAR system, a result of the fact that it is still a pilot system and not
yet a production-grade system.

Continuous indices highlight the hydrological model capability to correctly forecast the flow in
the whole hydrologic year. RMSE identifies the mean gap (in absolute value) between observed and
forecasted flow that demonstrates the better performance of NH and the importance of optimization
process (Table 7). RSR and NSE are normalized indices that, starting from RMSE, are useful to
evaluate the performances in comparison with reference values. According to Moriasi et al. 2007 [49]
classification that identifies five levels (bad, unsatisfactory, satisfactory, good and very good): (1) NH
performance is satisfactory before and very good after the optimization and (2) WWH performance is
bad (RSR) or unsatisfactory (NSE) for the original version and good after the optimization process.
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Categorical indices are fundamental to highlight the ability to correctly identify the flow values
above the threshold used to distinguish flood to normal values. BIAS show that WWH is not able to
forecast flood values, NH forecasts underestimate (BIAS < 1) and optimized forecasts overestimate
(BIAS > 1) streamflow. POD and FAR are the fundamental values to identify the forecasting capability.
HYPE forecasts demonstrate a quite good POD but a too high FAR resulting in forecasts that are good
but not completely reliable. Optimization raises POD (similar performance of NHOTT and WWHOTT)
and reduces FAR for both models. For this point it is important to highlight that the values in Table 7
derive from the mean between Garbey Kourou and Bossey Bangou performances (complete values are
reported in Appendix A). This difference is clearly noticeable for NHOTT POD and FAR that derive
from excellent values in GK (POD = 0.85 and FAR = 0.35) and bad values in BB (POD = 0.4 and
FAR = 0.65). PC values are quite constant for NH before and after the optimization and reduces in
WWH since the high number of over forecasting. TS and HSS jointly consider the POD and FAR
emphasizing the best performances of NH compared to WWH. In wider terms, from both continuous
and categorical points of view, optimization process allows to significantly reduce the gap between
forecasts and observations confirming previous results reached in the literature [30,57].

Finally, operational availability quantifies the number of missing forecasts (i.e., not produced
within the forecast issue date). The results show that NH has significantly worse availability than WWH
for the considered time frame (Table 7), and that none of them ensures full time availability. This problem
was typically caused by various information communications technology (ICT) production failures on
the Hydrology-TEP cloud platform (https://hydrology-tep.eu) on which the FANFAR pilot system is
currently deployed to run every day. Most problems were related to necessary files being inaccessible
or incorrectly stored on the Hydrology-TEP Catalogue and Store, while a minority were also related
to the forecasting production service. To be robust, local EWS requires new forecasts every day
without delay [28], therefore there is a need to upgrade the FANFAR pilot system to a fully supported
operational production-grade system.

4.2. SLAPIS Operational Application

According to the evaluation of the HYPE models’ reliability conducted with continuous, categorical,
and operational availability indices on NH and WWH, the latter has been integrated in SLAPIS to
be used operationally during the last hydrological season by Niger Hydrological Directorate with
restriction to registered users of the SLAPIS platform. The reasons for the choice of WWH are three: (1)
the direct output in the BB sub-basin; (2) the more similar results in the two stations and the better
forecast performance in BB more useful for the EWS and; (3) the considerably higher value for the
operational availability in comparison to NH.

Thanks to the adoption of service oriented architecture paradigms, it was possible to easily
integrate WWH into SLAPIS using open-source technologies and developing software components.
The data model of SLAPIS has been enriched with new tables to store WWH outcomes for seven
specific sub-basins, two of them connected with the gauging stations of Bossey Bangou and Garbey
Kourou. Following the WWH outcome specifications, an automatic procedure has been developed
using J2EE technology and integrating OpenSearch engine to download and store WWH forecasts into
the Geo Data Base every day (Figure 8). The WWH forecast availability in the SLAPIS database starts
from June 2017 and is quite constant for each sub-basin.

The WWH optimization procedure has been developed inside the SLAPIS database, based on
PostgreSQL and PostGIS engines, using PL/pgSQL language. This procedure is exposed through a
REST web service developed with JAX-RS and J2EE technologies to supply calibrated WWH outcomes.
The REST web service is used by SLAPIS web application (www.slapis-niger.org) in order to show and
plot WWH optimized forecasts through the graphical user interface (Figure 9).

https://hydrology-tep.eu
www.slapis-niger.org
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Figure 9. User interface of SLAPIS platform with hydrograph of observed and forecasted discharge in
Garbey Kourou the 25 August 2020. The black line is the observed flow, the grey line is the hydraulic
forecast, and the red line the WWH optimized forecast.

WWH forecasts are available only for profiled users (e.g., operational hydrologists, ANADIA2
partners or scientists). All data are also accessible by Web Catalogue Service of the SLAPIS web platform
or using application programing interfaces (APIs) for users with more advanced informatic skills.

5. Discussion

The results show a general overestimation in the optimized forecast compared to the 2019 observed
flow used for model verification. This behavior is motivated by the fact that 2019 hydrological year was
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characterized by a low flow compared to the previous years: mean flow in 2019 was 72.8 m3/s while in
the previous year it was higher (2018 = 99.2, 2017 = 106.6 and 2016 = 104.7). Therefore, the flows used
for optimization force a higher discharge than the observed in 2019 [13,30].

With a longer training period, a larger number of previous forecasts could be used to force new
data in the optimized version, likely resulting in a higher reliability. Of course, the short data sets used
for the training period (3 years for NH and 2 years for WWH) are a limit of this study, and with longer
reforecasting sequence performances could increase [30].

The choice of hazard thresholds significantly affects categorical performance. Of course, the use
of hydrologic and damage-based thresholds is the best choice to evaluate the EWS capability against
a flow that can produce field damages. Unfortunately, the low flows registered in 2019 forced the
authors to introduce a threshold lower than the one used operationally in the field.

The results also hint at the most appropriate users of hydrological forecasts, namely operational
hydrologists, and emergency management experts rather than local authorities or the regular users.
The POD and FAR results show that only 60% of observed streamflow above the analysis threshold
were correctly forecasted, and that there were a high number of false alarms (50% for NH and 75%
for WWH). This accuracy is too poor to allow the use of hydrological forecasts for activating the
warning protocols on the field since it could compromise the user’s confidence in SLAPIS and therefore
the overall reliability of the system [28]. Large-scale hydrological information may potentially be
misleading when interpreted at the local scale and can change the key message of the local impacts [58].
So, the outputs of hydrological models need context at decision scale to be useful to users. For these
reasons hydrological forecasts will be used to activate the pre-warning protocols for the hydrological
experts and not the field warning. A similar conclusion about appropriate users and stakeholders for
FANFAR forecasts have been obtained on West Africa scale [38].

Continuous and categorical performances of the models demonstrate the importance of
hydrological model calibration with flow data at daily timestep. Strong difference was detected
in NH between GK (calibrated) and BB (not calibrated) behavior and also between NH and WWH that
were calibrated respectively at a local scale and a daily resolution and a global focus and a monthly
resolution. Another critical factor for accurate hydrological forecasts is the availability of meteorological
observations and forecasts with low latency and high accuracy. The long latency of such data have been
demonstrated to cause bias and drifts in other areas [42]—which may explain the two-week forecast
delay observed at GK—and efforts to improve both accuracy and latency of meteorological input
data are being investigated [41]. Broadly speaking, the FANFAR system is designed to incorporate a
range of approaches aimed at improving accuracy. For example the system enables multiple forecast
chain configurations (e.g., multiple hydrological models), integration of various observations (e.g.,
water levels from local gauges and satellite altimetry), and a range of methods to assess flood hazard
(e.g., with locally defined flood hazard thresholds). The system is continuously being developed,
with new features added regularly. Most recently (since August 2020), the forecasted streamflow is
adjusted with recent in-situ gauge observations (currently from up to 61 hydrometric gauges including
Sirba stations) using a simple auto-regressive approach [41].

The operational availability of forecasts from the FANFAR pilot system is currently a major
limitation for application of HYPE forecasts in local EW. Since FANFAR is a pilot system, the main
emphasis is currently put on system development rather than operational availability. Some operational
procedures are in place (e.g., production monitoring), but not yet to the extent normally deployed in
mature production-grade systems. In mature systems, there is typically a response process deployed
to solve production failures through a cascade of actions including e.g., (1) automatic repetition
of failed processing steps, (2) semi-automated intervention by a dedicated response team, and (3)
manual intervention by the system developers; where each level is activated only if the previous
failed. The speed by which problems are solved is typically regulated through service level agreements
(SLAs), that define, e.g., maximum response times and if the response team shall be active 24 h/7 d or
only during normal working hours. Production-grade systems typically also have a more thorough
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procedure for quality control of new code, testing periods before operational launch, as well as
heartbeat functionalities through which users are informed of any planned or unplanned production
disruptions. Therefore, the operational availability of HYPE forecasts is fully obtainable if deployed in
a production-grade ICT environment (e.g., a similar HYPE model deployed on SMHI’s production
environment had 100% operational availability over a full year of production). If FANFAR is to move
from pilot to production-grade system, attention to the ICT environment and the associated procedures
and SLAs for minimizing or eliminating production failures is required. Critical foundations for this
are also that the ICT environment is accessible, that mandated staff have the necessary capacity to
operate the system, and that the system is sufficiently financed [31].

Even though this uncertain situation of operational availability of HYPE forecasts is seen to
limit their effectiveness over time, the conceptual approach embraced in SLAPIS EWS is to foster
the re-use of hydrological forecasts produced at large scale to be tailored for local users’ needs.
The critical issue for an operational local EWS, built on distributed data resources and hydrological
services providers, is to face continuous technical evolutions of e-infrastructures and incoming
forecasted products. System key characteristics for adapting efficiently to such changes are flexibility,
transparency, timely documentation, and effective communication with hydrological information
producers. The latter is particularly important and should engage in a two-way producers and users
both having a common understanding of data and metadata model to effectively exchange them across
systems [59]. Indeed, data and metadata modeling add transparency in data exchange and facilitates
the development of APIs to interact with distributed data providers. This approach results in a mutual
benefit in the perspective of distributed hydrological climate services adding value to data through
customized services, maps, and visualizations. That recalls also for system architectures adopting
the paradigm of open data and standard web services to increase the interoperability of distributed
hydrometeorological services. Interoperability preserves key elements of diversity while ensuring
that systems work together in ways that matter most [60]. Following these principles, SLAPIS adopts
interoperable services compliant with the most international standards.

6. Conclusions

The flood local early warning system on the Sirba River (SLAPIS) was developed in the last years
as a pilot system to build a community response to the dramatic flood increase in the area. The system
was founded both on a top-down hydraulic forecast and on bottom-up field observations. These two
sources have a forecast horizon of maximum 48 h.

The downscaling of hydrological forecasts from the HYPE models has been planned to extend the
warning time of SLAPIS to 10 days. The application was made through an optimization on the 5-day
model outputs with a linear regression technique.

The forecast verification shows that NH forecasts are better than WWH ones both in original and
optimized versions, for continuous and categorical indices. However, NH forecasts demonstrate a
considerably low operational availability. The WWH model was chosen for the operational integration
in the user-interface of the SLAPIS EWS as it resulted in the best operational availability quality
performances, a high uniformity, and a direct sub-basin on the upstream gauging station.

However, due to the low performance, and to not impact upon the system reliability, WWH forecasts
are used as a pre-warning for hydrologists and not for operational warning for the involved villages.

Methodologically, this study stresses the role of interoperability in distributed hydrometeorological
services incrementing collaborative action to facilitate further data and webservice usage and making
progress toward the sustainable development goals.

Future perspectives of this work will evaluate the optimization process on a higher number of
training and validation years, and to use operational hazard thresholds. Moreover, the reinforcement
of the ICT environment and procedures for HYPE models will allow a higher operational availability.
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Appendix A

Results in Bossey Bangou hydrometer: basic statistical parameters (Table A1), Flow duration
curve (Figure A1) and hydrograph (Figure A2).

Table A1. Basic statistical parameters (minimum, mean, and maximum) at Bossey Bangou in the
validation year 2019. Observed flow, NH and WWH (5 day) forecasts before and after the optimization.

Index Observed NH WWH Optimized NH Optimized WWH

Minimum (m3/s) 0.0 0.4 0.0 0.4 0.0
Mean (m3/s) 75.1 66.6 5.3 107.0 114.0

Maximum (m3/s) 573.5 525.8 111.4 573.7 572.0
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Observed flow, NH and WWH (5 day) forecasts before and after the optimization.



Water 2020, 12, 3504 17 of 20

Water 2020, 12, x FOR PEER REVIEW 17 of 21 

 

 
Figure A1. Flow duration curve of the Sirba River at Bossey Bangou in the validation year 2019. 
Observed flow, NH and WWH (5 day) forecasts before and after the optimization. 

 
Figure A2. Hydrograph of original and optimized 5-day forecasts from NH and WWH in Bossey 
Bangou for the wet season of the validation year (1 June 19–31 Octomber 19). 

Continuous and categorical indices and operational availability in Garbey Kourou (Table A2) 
and Bossey Bangou (Table A3) hydrometers. 

Table A2. Continuous and categorical indices and operational availability for original and optimized 
forecasts at Garbey Kourou. Best performance is shown in bold. 

Model RMSE RSR NSE BIAS POD FAR PC TS HSS 
Operational 
Availability 

NH 102.6 0.61 0.62 0.92 0.38 0.58 94.2 0.25 0.37 81% 
WWH 161.3 1.04 -0.09 0.00 0.00 / 94.7 0.00 0.00 92% 
NHOTT 74.1 0.44 0.80 1.31 0.85 0.35 96.9 0.58 0.72 81% 

WWHOTT 87.1 0.56 0.68 2.50 0.63 0.75 88.1 0.22 0.30 92% 

Table A3. Continuous and categorical indices and operational availability for original and optimized 
forecasts at Bossey Bangou. Best performance is shown in bold. 

Model RMSE RSR NSE BIAS POD FAR PC TS HSS Operational 
Availability 

Figure A2. Hydrograph of original and optimized 5-day forecasts from NH and WWH in Bossey
Bangou for the wet season of the validation year (1 June 19–31 Octomber 19).

Continuous and categorical indices and operational availability in Garbey Kourou (Table A2) and
Bossey Bangou (Table A3) hydrometers.

Table A2. Continuous and categorical indices and operational availability for original and optimized
forecasts at Garbey Kourou. Best performance is shown in bold.

Model RMSE RSR NSE BIAS POD FAR PC TS HSS Operational
Availability

NH 102.6 0.61 0.62 0.92 0.38 0.58 94.2 0.25 0.37 81%
WWH 161.3 1.04 −0.09 0.00 0.00 / 94.7 0.00 0.00 92%

NHOTT 74.1 0.44 0.80 1.31 0.85 0.35 96.9 0.58 0.72 81%
WWHOTT 87.1 0.56 0.68 2.50 0.63 0.75 88.1 0.22 0.30 92%

Table A3. Continuous and categorical indices and operational availability for original and optimized
forecasts at Bossey Bangou. Best performance is shown in bold.

Model RMSE RSR NSE BIAS POD FAR PC TS HSS Operational
Availability

NH 112.7 0.67 0.55 0.40 0.07 0.83 0.93 0.05 0.06 81%
WWH 161.8 1.05 −0.11 0.00 0.00 / 0.94 0.00 0.00 92%

NHOTT 78.3 0.47 0.78 1.13 0.40 0.65 0.92 0.23 0.33 81%
WWHOTT 86.80 0.57 0.68 2.22 0.50 0.78 0.87 0.18 0.25 92%
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